This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
start [2019/09/23 21:08] tstibor |
start [2020/12/09 15:27] (current) |
||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | Just a test: $1 + 2 + \ldots + N = \sum_{n=1}^{N} n = \frac{n (n + 1)}{2}$ | + | |
| - | + | | |
| - | ====== Sensor Parameters and Linearity Check ====== | + | |
| - | + | ||
| - | ===== ATIK 414EX mono ===== | + | |
| - | + | ||
| - | ^Gain [e/ | + | |
| - | |0.261 | 5.687 | 21.781 | 0.044 | 17110.913 | 3008.800 | 0| | + | |
| - | + | ||
| - | ===== Canon EOS 700D ===== | + | |
| - | ^ISO^Gain [e/ | + | |
| - | | 100 | 2.2 | + | |
| - | | 200 | 1.126 | 8.517 | 7.562 | 0.057 | 18451.242 | 2166.487 | 29 | | + | |
| - | | 400 | 0.567 | 5.204 | 9.180 | 0.017 | 9287.538 | + | |
| - | | 800 | 0.291 | 3.703 | 12.732 | 0.006 | 4765.202 | + | |
| - | | 1600 | 0.143 | 3.013 | 21.052 | 0.004 | 2344.487 | + | |
| - | + | ||
| - | ====== Equipment ====== | + | |
| - | + | ||
| - | ===== Telescope ===== | + | |
| - | ^Model^Type^Diameter | + | |
| - | | TS-Optics UNC Carbon tube | Newton | + | |
| - | | TS-Optics Quadruple | + | |
| - | | TS-Optics Guide Scope | Achromatic Refractor | 60 | 240 | f/4 | | + | |
| - | + | ||
| - | ===== Mount ===== | + | |
| - | ^Model^Type^Maximum instrument capacity [kg]^ | + | |
| - | |Celestron AVX | Equatorial mount | 14 | | + | |
| - | + | ||
| - | ===== Camera ===== | + | |
| - | ^Model^Pixel size [μm]^Sensor size [mm]^Resolution [pixel]^Sensor^Modification | + | |
| - | | Canon EOS 700D ((BCF-Filter modified by Baader Planetarium)) | 4.3 | 22.3 x 14.9 | 5184 x 3456| | + | |
| - | | ATIK 414EX mono | 6.45 | 8.98 x 6.71 | 1391 x 1039| SONY ICX825ALA | | + | |
| - | | ZWO ASI130mm | + | |
| - | + | ||
| - | ====== CCD/CMOS Resolution ====== | + | |
| - | ^Camera^Telescope^Resolution | + | |
| - | | Canon EOS 700D | TS-Optics UNC Carbon tube | 1.48 | 2.13 x 1.42 | 127.82 x 85.4 | | + | |
| - | | Canon EOS 700D | TS-Optics Quadruple | + | |
| - | | ATIK 414EX mono | TS-Optics UNC Carbon tube | 2.22 | 0.86 x 0.64 | 51.47 x 38.46 | | + | |
| - | | ATIK 414EX mono | TS-Optics Quadruple | + | |
| - | + | ||
| - | ====== Fitting Gaussian Function with Gradient Descent ====== | + | |
| - | + | ||
| - | ===== Gaussian Function ===== | + | |
| - | The Gaussian function is defined as follows | + | |
| - | \begin{equation} | + | |
| - | \label{eq: | + | |
| - | G(x ; b, I, \mu, \sigma) = b + \frac{I}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{(x - \mu)^2}{2 \sigma^2} \right) | + | |
| - | \end{equation} | + | |
| - | where parameter $b \in \mathbb{R}$ denotes the background, that is, the offset from the abscissa. Parameter $I \in \mathbb{R}$ the intensity, the area under the curve to the background $b$, | + | |
| - | $\mu \in \mathbb{R}$ the mean and $\sigma \in \mathbb{R}$ standard deviation --- sometimes also called the // | + | |
| - | Note, for $I = 1$ and $b = 0$, term (\ref{eq: | + | |
| - | For the sake of simplicity we denote $\theta := (b, I, \mu, \sigma)$. | + | |
| - | + | ||
| - | ===== Fitting Data ===== | + | |
| - | Giving a sample $\left\{x^{(n)}, | + | |
| - | minimize the least square error | + | |
| - | \begin{eqnarray} | + | |
| - | \label{eq: | + | |
| - | E(x) & = & \frac{1}{2 N}\sum_{n=1}^N \left[G(x^{(n)} ; \Theta) - y^{(n)}\right]^2 | + | |
| - | \end{eqnarray} | + | |
| - | and thus inferring parameter $\Theta$. | + | |
| - | + | ||
| - | ===== Derivatives ===== | + | |
| - | The first order partial derivatives of~(\ref{eq: | + | |
| - | \begin{eqnarray} | + | |
| - | \label{eq: | + | |
| - | \frac{\partial G(x ; \overline{\theta})}{\partial I} & = & \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2}\right) = p(x; \mu, \sigma)\\ | + | |
| - | \label{eq: | + | |
| - | \frac{\partial G(x ; \overline{\theta})}{\partial b} & = & 1 \\ | + | |
| - | \label{eq: | + | |
| - | \frac{\partial G(x ; \overline{\theta})}{\partial \mu} & = & I \, \frac{(x - \mu)}{\sigma^3 | + | |
| - | \label{eq: | + | |
| - | \frac{\partial G(x ; \overline{\theta})}{\partial \sigma} & = & I \, \frac{((x - \mu)^2 - \sigma^2)}{\sigma^4 \sqrt{2 | + | |
| - | \end{eqnarray} | + | |
| - | + | ||