User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2019/09/23 20:43]
tstibor
start [2020/12/09 15:27] (current)
Line 1: Line 1:
-Just a test: $1 + 2 + \ldots + N = \sum_{n=1}^{N} n = \frac{n (n + 1)}{2}$ +  * Photometry 
- +  [[spectroscopy|Spectroscopy]] 
-====== Sensor Parameters and Linearity Check ====== +  [[equipment|Equipment]]
- +
-===== ATIK 414EX mono ===== +
- +
-^Gain [e/ADU]^Readout noise [e]^Readout noise [ADU]^Dark current [e/sec]^Fullwell capacity^Dynamic range [steps]^Sensor temperature (median) [celcius]^ +
-|0.261 | 5.687 | 21.781 | 0.044 | 17110.913 | 3008.800 | 0| +
- +
-===== Canon EOS 700D ===== +
-^ISO^Gain [e/ADU]^Readout noise [e]^Readout noise [ADU]^Dark current [e/sec]^Fullwell capacity^Dynamic range [steps]^Sensor temperature (median) [celcius]^ +
-| 100  | 2.2   | 15.783 | 7.173  | 0.113 | 36049.763 | 2284.028 | 29.5 | +
-| 200  | 1.126 | 8.517  | 7.562  | 0.057 | 18451.242 | 2166.487 | 29   | +
-| 400  | 0.567 | 5.204  | 9.180  | 0.017 | 9287.538  | 1784.674 | 28   | +
-| 800  | 0.291 | 3.703  | 12.732 | 0.006 | 4765.202  | 1286.805 | 28   | +
-| 1600 | 0.143 | 3.013  | 21.052 | 0.004 | 2344.487  | 778.228  | 27.5 | +
- +
-====== Equipment ====== +
- +
-===== Telescope ===== +
-^Model^Type^Diameter [mm]^Focal length [mm]^Photographic speed^ +
-TS-Optics UNC Carbon tube | Newton               | 150 | 600 | f/4   | +
-| TS-Optics Quadruple       | Achromatic Refractor | 65  | 420 | f/6.5 | +
-| TS-Optics Guide Scope     | Achromatic Refractor | 60  | 240 | f/4   | +
- +
-===== Mount ===== +
-^Model^Type^Maximum instrument capacity [kg]+
-|Celestron AVX | Equatorial mount | 14 | +
- +
-===== Camera ===== +
-^Model^Pixel size [μm]^Sensor size [mm]^Resolution [pixel]^Sensor^Modification +
-| Canon EOS 700D ((BCF-Filter modified by Baader Planetarium)) | 4.3  | 22.3 x 14.9 | 5184 x 3456| +
-| ATIK 414EX mono | 6.45 | 8.98 x 6.71 | 1391 x 1039| SONY ICX825ALA | +
-| ZWO ASI130mm    | 5.2  | 6.66 x 5.32 | 1280 x 1024| MT9M001C12STM | +
- +
-====== Fitting Gaussian Function with Gradient Descent ====== +
- +
-===== Gaussian Function ===== +
-The Gaussian function is defined as follows +
-\begin{equation} +
-  \label{eq:univariate.gaussian.func} +
-  G(x ; b, I, \mu, \sigma) = b + \frac{I}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{(x - \mu)^2}{2 \sigma^2} \right) +
-\end{equation} +
-where parameter $b \in \mathbb{R}$ denotes the background, that is, the offset from the abscissa. Parameter $I \in \mathbb{R}$ the intensity, the area under the curve to the background $b$, +
-$\mu \in \mathbb{R}$ the mean and $\sigma \in \mathbb{R}$ standard deviation --- sometimes also called the //width//+
-Note, for $I = 1$ and $b = 0$, term (\ref{eq:univariate.gaussian.func}) is the probability density function of the normal distribution which we denote as $p(x; \mu, \sigma) \widehat{=} G(x; 0, 1, \mu, \sigma)$. +
-For the sake of simplicity we denote $\theta := (b, I, \mu, \sigma)$. +
- +
-===== Fitting Data ===== +
-Giving a sample $\left\{x^{(n)}, y^{(n)}\right\}_{n=1}^N$ of size $N$ where $x^{(n)}, y^{(n)}\in \mathbb{R}$ our goal is to +
-minimize the least square error +
-\begin{eqnarray} +
-  \label{eq:error.function} +
-  E(x) & = & \frac{1}{2 N}\sum_{n=1}^N \left[G(x^{(n)} ; \Theta) - y^{(n)}\right]^2 +
-\end{eqnarray} +
-and thus inferring parameter $\Theta$. +
- +
-===== Derivatives ===== +
-The first order partial derivatives of~(\ref{eq:univariate.gaussian.func}) are +
-\begin{eqnarray} +
-  \label{eq:deriv.1d.I} +
-  \frac{\partial G(x ; \overline{\theta})}{\partial I} & = & \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2}\right) = p(x; \mu, \sigma)\\ +
-  \label{eq:deriv.1d.b} +
-  \frac{\partial G(x ; \overline{\theta})}{\partial b} & = & 1 \\ +
-  \label{eq:deriv.1d.mu} +
-  \frac{\partial G(x ; \overline{\theta})}{\partial \mu} & = & I \, \frac{(x - \mu)}{\sigma^3  \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2  \sigma^2} \right) = I \frac{(x - \mu)}{\sigma^2} \, p(x; \mu, \sigma)\\ +
-  \label{eq:deriv.1d.sigma} +
-  \frac{\partial G(x ; \overline{\theta})}{\partial \sigma} & = & I \, \frac{((x - \mu)^2 - \sigma^2)}{\sigma^4 \sqrt{2  \pi}  } \exp\left(-\frac{(x - \mu)^2}{2  \sigma^2} \right) = I \frac{((x - \mu)^2 - \sigma^2)}{\sigma^3} \, p(x; \mu, \sigma) +
-\end{eqnarray} +
- +
  
  
start.1569271413.txt.gz · Last modified: 2020/12/09 15:30 (external edit)