This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
|
spectral_class_a [2019/12/24 16:03] tstibor created |
spectral_class_a [2020/12/09 15:27] (current) |
||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ===== Puerto Naos (La Palma) 2019-10-28 ===== | ===== Puerto Naos (La Palma) 2019-10-28 ===== | ||
| ==== Instrumental Response ==== | ==== Instrumental Response ==== | ||
| - | {{: | + | {{: |
| ==== Alpha Lyra (Vega) ==== | ==== Alpha Lyra (Vega) ==== | ||
| [[http:// | [[http:// | ||
| - | {{: | + | {{: |
| Comparison multiplot with Christian Buil's [[http:// | Comparison multiplot with Christian Buil's [[http:// | ||
| - | {{: | + | {{: |
| - | Created colored spectra image | + | 2D-spectra image |
| + | {{: | ||
| + | and inverted | ||
| + | {{: | ||
| + | |||
| + | Created | ||
| {{: | {{: | ||
| Line 26: | Line 31: | ||
| </ | </ | ||
| {{:: | {{:: | ||
| + | ==== Resolving Power & Resolution ==== | ||
| + | The //resolving power// is defined as $R = \frac{\lambda}{\Delta \lambda}$, where $\lambda$ is the wavelength and $\Delta \lambda$ the wavelength interval defined as the //spectral resolution// | ||
| + | The spectral resolution is the smallest wavelength interval that can be distinguished and is expressed in | ||
| + | wavelength units as Å or nanometers. In addition, it can be expressed as the $\Delta \lambda = \text{FWHM}_{\text{Instrument}} = \frac{\lambda}{R}$. | ||
| + | |||
| + | The FWHM values are measured with SpcAudace at | ||
| + | < | ||
| + | spc_fwhm alplyr--profil-1c_sel 3934 3990 a | ||
| + | # 44.722014838 6.52887092647 | ||
| + | </ | ||
| + | < | ||
| + | spc_fwhm alplyr--profil-1c_sel 4056 4143 a | ||
| + | # 47.6019613648 7.1041365302 | ||
| + | </ | ||
| + | < | ||
| + | spc_fwhm alplyr--profil-1c_sel 4304 4416 a | ||
| + | # 54.6684579023 4.66692282694 | ||
| + | </ | ||
| + | < | ||
| + | spc_fwhm alplyr--profil-1c_sel 4825 4905 a | ||
| + | # 65.4526604596 6.58084006378 | ||
| + | </ | ||
| + | and yields a mean $\text{FWHM}_{\text{Instrument}}$ value of $\Delta \lambda = 53.11127$ Å and a mean resolving power of | ||
| + | $R = \frac{1}{4} (\frac{4860}{65.4526604596} + \frac{4340}{54.6684579023} + \frac{4101}{47.6019613648} + \frac{3966}{44.722014838}) = 82.11821$ | ||