This is an old revision of the document!
Just a test: $1 + 2 + \ldots + N = \sum_{n=1}^{N} n = \frac{n (n + 1)}{2}$
Sensor Parameters and Linearity Check
ATIK 414EX mono
Gain [e/ADU] | Readout noise [e] | Readout noise [ADU] | Dark current [e/sec] | Fullwell capacity | Dynamic range [steps] | Sensor temperature (median) [celcius] |
0.261 | 5.687 | 21.781 | 0.044 | 17110.913 | 3008.800 | 0 |
Canon EOS 700D
ISO | Gain [e/ADU] | Readout noise [e] | Readout noise [ADU] | Dark current [e/sec] | Fullwell capacity | Dynamic range [steps] | Sensor temperature (median) [celcius] |
100 | 2.2 | 15.783 | 7.173 | 0.113 | 36049.763 | 2284.028 | 29.5 |
200 | 1.126 | 8.517 | 7.562 | 0.057 | 18451.242 | 2166.487 | 29 |
400 | 0.567 | 5.204 | 9.180 | 0.017 | 9287.538 | 1784.674 | 28 |
800 | 0.291 | 3.703 | 12.732 | 0.006 | 4765.202 | 1286.805 | 28 |
1600 | 0.143 | 3.013 | 21.052 | 0.004 | 2344.487 | 778.228 | 27.5 |
Equipment
Telescope
Model | Type | Diameter [mm] | Focal length [mm] | Photographic speed |
TS-Optics UNC Carbon tube | Newton | 150 | 600 | f/4 |
TS-Optics Quadruple | Achromatic Refractor | 65 | 420 | f/6.5 |
TS-Optics Guide Scope | Achromatic Refractor | 60 | 240 | f/4 |
Mount
Model | Type | Maximum instrument capacity [kg] |
Celestron AVX | Equatorial mount | 14 |
Camera
Model | Pixel size [μm] | Sensor size [mm] | Resolution [pixel] | Sensor |
Canon EOS 700D 1) | 4.3 | 22.3 x 14.9 | 5184 x 3456 | |
ATIK 414EX mono | 6.45 | 8.98 x 6.71 | 1391 x 1039 | SONY ICX825ALA |
ZWO ASI130mm | 5.2 | 6.66 x 5.32 | 1280 x 1024 | MT9M001C12STM |
CCD/CMOS Resolution
Camera | Telescope | Resolution [arc seconds / pixel] | FOV [degree] | |
Canon EOS 700D | TS-Optics UNC Carbon tube | 1.48 | 2.13 x 1.42 | 127.82 x 85.4 |
Canon EOS 700D | TS-Optics Quadruple | 2.11 | 3.04 x 2.03 | 182.59 x 122 |
ATIK 414EX mono | TS-Optics UNC Carbon tube | 2.22 | 0.86 x 0.64 | 51.47 x 38.46 |
ATIK 414EX mono | TS-Optics Quadruple | 3.17 | 1.23 x 0.91 | 73.53 x 54.94 |
Fitting Gaussian Function with Gradient Descent
Gaussian Function
The Gaussian function is defined as follows
\begin{equation}
\label{eq:univariate.gaussian.func}
G(x ; b, I, \mu, \sigma) = b + \frac{I}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{(x - \mu)^2}{2 \sigma^2} \right)
\end{equation}
where parameter $b \in \mathbb{R}$ denotes the background, that is, the offset from the abscissa. Parameter $I \in \mathbb{R}$ the intensity, the area under the curve to the background $b$,
$\mu \in \mathbb{R}$ the mean and $\sigma \in \mathbb{R}$ standard deviation — sometimes also called the width.
Note, for $I = 1$ and $b = 0$, term (\ref{eq:univariate.gaussian.func}) is the probability density function of the normal distribution which we denote as $p(x; \mu, \sigma) \widehat{=} G(x; 0, 1, \mu, \sigma)$.
For the sake of simplicity we denote $\theta := (b, I, \mu, \sigma)$.
Fitting Data
Giving a sample $\left\{x^{(n)}, y^{(n)}\right\}_{n=1}^N$ of size $N$ where $x^{(n)}, y^{(n)}\in \mathbb{R}$ our goal is to
minimize the least square error
\begin{eqnarray}
\label{eq:error.function}
E(x) & = & \frac{1}{2 N}\sum_{n=1}^N \left[G(x^{(n)} ; \Theta) - y^{(n)}\right]^2
\end{eqnarray}
and thus inferring parameter $\Theta$.
Derivatives
The first order partial derivatives of~(\ref{eq:univariate.gaussian.func}) are
\begin{eqnarray}
\label{eq:deriv.1d.I}
\frac{\partial G(x ; \overline{\theta})}{\partial I} & = & \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2}\right) = p(x; \mu, \sigma)\\
\label{eq:deriv.1d.b}
\frac{\partial G(x ; \overline{\theta})}{\partial b} & = & 1 \\
\label{eq:deriv.1d.mu}
\frac{\partial G(x ; \overline{\theta})}{\partial \mu} & = & I \, \frac{(x - \mu)}{\sigma^3 \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2} \right) = I \frac{(x - \mu)}{\sigma^2} \, p(x; \mu, \sigma)\\
\label{eq:deriv.1d.sigma}
\frac{\partial G(x ; \overline{\theta})}{\partial \sigma} & = & I \, \frac{((x - \mu)^2 - \sigma^2)}{\sigma^4 \sqrt{2 \pi} } \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2} \right) = I \frac{((x - \mu)^2 - \sigma^2)}{\sigma^3} \, p(x; \mu, \sigma)
\end{eqnarray}