User Tools

Site Tools


start

This is an old revision of the document!


Just a test: $1 + 2 + \ldots + N = \sum_{n=1}^{N} n = \frac{n (n + 1)}{2}$

Sensor Parameters and Linearity Check

ATIK 414EX mono

Gain [e/ADU]Readout noise [e]Readout noise [ADU]Dark current [e/sec]Fullwell capacityDynamic range [steps]Sensor temperature (median) [celcius]
0.261 5.687 21.781 0.044 17110.913 3008.800 0

Canon EOS 700D

ISOGain [e/ADU]Readout noise [e]Readout noise [ADU]Dark current [e/sec]Fullwell capacityDynamic range [steps]Sensor temperature (median) [celcius]
100 2.2 15.783 7.173 0.113 36049.763 2284.028 29.5
200 1.126 8.517 7.562 0.057 18451.242 2166.487 29
400 0.567 5.204 9.180 0.017 9287.538 1784.674 28
800 0.291 3.703 12.732 0.006 4765.202 1286.805 28
1600 0.143 3.013 21.052 0.004 2344.487 778.228 27.5

Equipment

Telescope

ModelTypeDiameter [mm]Focal length [mm]Photographic speed
TS-Optics UNC Carbon tube Newton 150 600 f/4
TS-Optics Quadruple Achromatic Refractor 65 420 f/6.5
TS-Optics Guide Scope Achromatic Refractor 60 240 f/4

Mount

ModelTypeMaximum instrument capacity [kg]
Celestron AVX Equatorial mount 14

Camera

ModelPixel size [μm]Sensor size [mm]Resolution [pixel]Sensor
Canon EOS 700D 1) 4.3 22.3 x 14.9 5184 x 3456
ATIK 414EX mono 6.45 8.98 x 6.71 1391 x 1039 SONY ICX825ALA
ZWO ASI130mm 5.2 6.66 x 5.32 1280 x 1024 MT9M001C12STM

CCD/CMOS Resolution

CameraTelescopeResolution [arc seconds / pixel]FOV [degree]
Canon EOS 700D TS-Optics UNC Carbon tube 1.48 2.13 x 1.42 127.82 x 85.4
Canon EOS 700D TS-Optics Quadruple 2.11 3.04 x 2.03 182.59 x 122
ATIK 414EX mono TS-Optics UNC Carbon tube 2.22 0.86 x 0.64 51.47 x 38.46
ATIK 414EX mono TS-Optics Quadruple 3.17 1.23 x 0.91 73.53 x 54.94

Fitting Gaussian Function with Gradient Descent

Gaussian Function

The Gaussian function is defined as follows \begin{equation} \label{eq:univariate.gaussian.func} G(x ; b, I, \mu, \sigma) = b + \frac{I}{\sigma \sqrt{2 \pi}} \exp\left(- \frac{(x - \mu)^2}{2 \sigma^2} \right) \end{equation} where parameter $b \in \mathbb{R}$ denotes the background, that is, the offset from the abscissa. Parameter $I \in \mathbb{R}$ the intensity, the area under the curve to the background $b$, $\mu \in \mathbb{R}$ the mean and $\sigma \in \mathbb{R}$ standard deviation — sometimes also called the width. Note, for $I = 1$ and $b = 0$, term (\ref{eq:univariate.gaussian.func}) is the probability density function of the normal distribution which we denote as $p(x; \mu, \sigma) \widehat{=} G(x; 0, 1, \mu, \sigma)$. For the sake of simplicity we denote $\theta := (b, I, \mu, \sigma)$.

Fitting Data

Giving a sample $\left\{x^{(n)}, y^{(n)}\right\}_{n=1}^N$ of size $N$ where $x^{(n)}, y^{(n)}\in \mathbb{R}$ our goal is to minimize the least square error \begin{eqnarray} \label{eq:error.function} E(x) & = & \frac{1}{2 N}\sum_{n=1}^N \left[G(x^{(n)} ; \Theta) - y^{(n)}\right]^2 \end{eqnarray} and thus inferring parameter $\Theta$.

Derivatives

The first order partial derivatives of~(\ref{eq:univariate.gaussian.func}) are \begin{eqnarray} \label{eq:deriv.1d.I} \frac{\partial G(x ; \overline{\theta})}{\partial I} & = & \frac{1}{\sigma \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2}\right) = p(x; \mu, \sigma)\\ \label{eq:deriv.1d.b} \frac{\partial G(x ; \overline{\theta})}{\partial b} & = & 1 \\ \label{eq:deriv.1d.mu} \frac{\partial G(x ; \overline{\theta})}{\partial \mu} & = & I \, \frac{(x - \mu)}{\sigma^3 \sqrt{2 \pi}} \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2} \right) = I \frac{(x - \mu)}{\sigma^2} \, p(x; \mu, \sigma)\\ \label{eq:deriv.1d.sigma} \frac{\partial G(x ; \overline{\theta})}{\partial \sigma} & = & I \, \frac{((x - \mu)^2 - \sigma^2)}{\sigma^4 \sqrt{2 \pi} } \exp\left(-\frac{(x - \mu)^2}{2 \sigma^2} \right) = I \frac{((x - \mu)^2 - \sigma^2)}{\sigma^3} \, p(x; \mu, \sigma) \end{eqnarray}

1)
BCF-Filter modified by Baader Planetarium
start.1569272936.txt.gz · Last modified: 2020/12/09 16:30 (external edit)